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Abstract 

In radiobiology, many dose-response results are modeled using the so-called linear-quadratic (LQ) model, 

which means that results are modeled as a function of dose D as 𝑅(𝐷) = 𝛽0 + 𝛽1𝐷 + 𝛽2𝐷
2. The 

coefficients 𝛽0 , 𝛽1 and 𝛽2  are obtained from fitting a series of data points (𝑥𝑖,𝑦𝑖), which is usually done 

using a least-square method. The LQ and more generally the polynomial fit capability is implemented in 

many software that analyzes data. However, it is often convenient to do the fitting programmatically, 

especially when a large number of datasets should be analyzed. Furthermore, depending on the software 

used, some features may not be implemented. In this mini-review, I discuss the basis of polynomial fitting, 

including the calculation of errors on the coefficients and results, use of weighting and fixing the intercept 

value (the coefficient 𝛽0). A simple C++ code to perform the polynomial curve fitting is also provided. This 

code should be useful not only in radiobiology but in other fields of science as well.    

 

1. Introduction 

For a given dataset (𝑥𝑖, 𝑦𝑖), i = 1,2, ..., n, where x is the independent variable and y is the dependent 

variable, a polynomial regression fits data to a model of the following form: 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯+ 𝛽𝑘𝑥𝑖

𝑘 + 휀𝑖 = ∑ 𝛽𝑗𝑥𝑖
𝑗𝑘

𝑗=0 + 휀𝑖  (1) 

where k is the polynomial order. In general, k is a small integer number. The parameters 𝛽𝑘 are estimated 
using a weighted least-square method. This method minimizes the sum of the squares of the deviations 
between the theoretical curve and the experimental points for a range of independent variables (Chernov, 
2010).  

The quantity 𝛽0  is the y-intercept and the parameters 𝛽1, 𝛽2 , …,  𝛽𝑘 are the "partial coefficients" (or 
"partial slopes"). The set of equations (1) can be written conveniently in matrix form:  

 𝑌 = 𝑋𝐵 + 𝐸, (2) 

where 

 𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

]; 𝑋 =

[
 
 
 1 𝑥1 𝑥1

2 ⋯ 𝑥1
𝑘

1 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑘

⋮
1

⋮
𝑥𝑛

⋮
𝑥𝑛

2
⋱
⋯

⋮
𝑥𝑛

𝑘]
 
 
 

; 𝐵 = [

𝛽0

𝛽1

⋮
𝛽𝑘

]; Ε = [

휀1

휀2

⋮
휀𝑛

] (3) 

Y is a n×1 column vector, X is a n×(k+1) matrix, B is a k×1 column vector, Ε is a n×1 column vector. 

Furthermore, 휀𝑖 are distributed as normal random variables with Ε̅ = 0 and 𝑉𝑎𝑟(Ε) = 𝜎2.  
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2. Calculation of the coefficients �̂�𝒌 

To calculate the coefficients 𝐵 that minimize the error ‖Ε‖2, the derivates with respect to 𝐵 are 
calculated and set equal to 0:  

 
𝜕‖Ε‖2

𝜕𝛽𝑚
= 0, (4) 

where 𝑚 = 0,… , 𝑘. This can be written explicitly as 

 ‖Ε‖2 = ∑ 휀𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖

𝑗𝑘
𝑗=0 )

2
𝑛
𝑖=1 , (5a) 

 ‖Ε‖2 = ∑ (𝑦𝑖
2 − 2𝑦𝑖

∑ 𝛽𝑗𝑥𝑖

𝑗𝑘
𝑗=0 + ∑ ∑ 𝛽𝑗𝛽𝑙

𝑘
𝑙=0

𝑘
𝑗=0 𝑥𝑖

𝑗+𝑙
)𝑛

𝑖=1 , (5b) 

So that 

 
𝜕‖Ε‖2

𝜕𝛽𝑚
= ∑ (−2𝑦𝑖

∑ 𝑥𝑖

𝑗𝑘
𝑗=0 𝛿𝑗𝑚 + ∑ ∑ 𝛿𝑗𝑚𝛽𝑙

𝑘
𝑙=0

𝑘
𝑗=0 𝑥𝑖

𝑗+𝑙
+ ∑ ∑ 𝛽𝑗𝛿𝑙𝑚

𝑘
𝑙=0

𝑘
𝑗=0 𝑥𝑖

𝑗+𝑙
)𝑛

𝑖=1 , (6) 

where 𝛿𝑖𝑗 is the Kronecker delta. This simplifies to 

 
𝜕‖Ε‖2

𝜕𝛽𝑚
= ∑ (−2𝑦𝑖𝑥𝑖

𝑚 + ∑ 𝛽𝑙
𝑘
𝑙=0 𝑥𝑖

𝑚+𝑙 + ∑ 𝛽𝑗𝑥𝑖

𝑗+𝑚𝑘
𝑗=0 )𝑛

𝑖=1 . (7) 

Changing summation indices simplifies the equation further: 

 
𝜕‖Ε‖2

𝜕𝛽𝑚
= ∑ (−2𝑦

𝑖
𝑥𝑖

𝑚 + 2 ∑ 𝛽
𝑗
𝑥
𝑖

𝑗+𝑚𝑘
𝑗=0 )𝑛

𝑖=1 . (8) 

Equating to 0, the following equations are obtained (𝑚 = 0,… , 𝑘 ): 

 ∑ 𝑦
𝑖
𝑥𝑖

𝑚 = ∑ ∑ 𝛽
𝑗
𝑥

𝑖

𝑗+𝑚𝑘
𝑗=0

𝑛
𝑖=1

𝑛
𝑖=1 . (9) 

These equations can also be written in matrix form as 

 [

∑𝑦𝑖

∑𝑥𝑖𝑦𝑖

⋮
∑𝑥𝑖

𝑘

] =

[
 
 
 
 
 

𝑛 ∑𝑥𝑖 ∑𝑥𝑖
2 ⋯     ∑𝑥𝑖

𝑘

∑𝑥𝑖 ∑𝑥𝑖
2 ∑𝑥𝑖

3 ⋯     ∑𝑥𝑖
𝑘+1

∑𝑥𝑖
2

⋮
∑𝑥𝑖

𝑘

∑𝑥𝑖
3

⋮
∑𝑥𝑖

𝑘+1

∑𝑥𝑖
4

⋮
∑𝑥𝑖

𝑘+2

⋯
⋱
⋯

∑𝑥𝑖
𝑘+2

⋮
∑𝑥𝑖

𝑘+𝑘 ]
 
 
 
 
 

[

𝛽0

𝛽1

⋮
𝛽𝑘

], (10) 

where all sums runs from i=1 to n. This can be further expressed with the matrices X, Y and B defined 

earlier: 

 [

1 1 1 ⋯ 1
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛

⋮
𝑥1

𝑘
⋮

𝑥2
𝑘

⋮
𝑥3

𝑘
⋱
⋯

⋮
𝑥𝑛

𝑘

][

𝑦1

𝑦2

⋮
𝑦𝑛

]= [

1 1 1 ⋯ 1
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛

⋮
𝑥1

𝑘
⋮

𝑥2
𝑘

⋮
𝑥3

𝑘
⋱
⋯

⋮
𝑥𝑛

𝑘

]

[
 
 
 1 𝑥1 𝑥1

2 ⋯ 𝑥1
𝑘

1 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑘

⋮
1

⋮
𝑥𝑛

⋮
𝑥𝑛

2
⋱
⋯

⋮
𝑥𝑛

𝑘 ]
 
 
 

[

𝛽0

𝛽1

⋮
𝛽𝑘

] , (11) 

 𝑋𝑇𝑌 = 𝑋𝑇𝑋𝐵, (12) 
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where XT is the transpose of X. Therefore B can be expressed in matrix form as  

 𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. (13) 

The result �̂� is the least square estimate of the vector B, and it is the solution to the linear equations, 
which can be written as:  

 �̂� =

[
 
 
 �̂�0

�̂�1

⋮
�̂�𝑘]

 
 
 

= (𝑋𝑇𝑋)−1𝑋𝑇𝑌, (14) 

The predicted value of Y for a given X is:  

 �̂� = 𝑋�̂�, (15) 

By substituting �̂� into (15), we define the matrix H as:  

 �̂� = [𝑋(𝑋𝑇𝑋)−1𝑋𝑇]𝑌 = 𝐻𝑌, (16) 

Note these important properties of the matrix H: 

 𝐻𝑇 = [𝑋(𝑋𝑇𝑋)−1𝑋𝑇]𝑇 = (𝑋𝑇 )𝑇[(𝑋𝑇𝑋)−1]𝑇𝑋𝑇 = 𝑋[(𝑋𝑇𝑋)𝑇]−1𝑋𝑇 = 𝐻, (17a) 

 𝐻2 = [𝑋(𝑋𝑇𝑋)−1𝑋𝑇][𝑋(𝑋𝑇𝑋)−1𝑋𝑇] = 𝐻, (17b) 

So that H is an idempotent matrix, i.e. 𝐻2 = 𝐻 = 𝐻𝑇.  

3. The residual sum of squares 

The residuals are defined as:  

 𝑟𝑒𝑠𝑖 = 𝑦𝑖 − 𝑦�̂�, (18) 

and the residual sum of squares (RSS) can be written by:  

 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 = ‖Ε‖2, (19) 

The RSS can also be written using 

 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 = (𝑌 − �̂�)
𝑇
(𝑌− �̂�) = (𝑌 − 𝐻𝑌)𝑇(𝑌− 𝐻𝑌), (20a) 

 𝑅𝑆𝑆 = 𝑌𝑇(𝐼𝑛 − 𝐻𝑇)(𝐼𝑛− 𝐻)𝑌 = 𝑌𝑇(𝐼𝑛 − 𝐻 − 𝐻𝑇 + 𝐻𝑇𝐻)𝑌 = 𝑌𝑇(𝐼𝑛 − 𝐻)𝑌, (20b) 

Where 𝐼𝑛 is an identity matrix with n elements. Since 𝐻2 = 𝐻, it can be shown that the eigenvalues of this 

matrix are either 0 or 1: 

 𝐻𝑣 = 𝑙𝑣; (21a) 
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 𝐻2𝑣= 𝐻(𝐻𝑣) = 𝐻(𝑙𝑣) = 𝑙𝐻𝑣 = 𝑙2𝑣 (21b) 

So that 𝑙2 = 𝑙. This implies that 𝑙 = 0 or 𝑙 = 1. Furthermore, the sum of the eigenvalues equals the trace 

of the matrix, so that  

 𝑇𝑟(𝐼𝑛 − 𝐻) = 𝑇𝑟(𝐼𝑛)− 𝑇𝑟(𝐻) = 𝑛 − 𝑇𝑟(𝑋(𝑋𝑇𝑋)−1𝑋𝑇) (22a) 

 𝑇𝑟(𝐼𝑛 − 𝐻) = 𝑛 − 𝑇𝑟((𝑋𝑇𝑋)(𝑋𝑇𝑋)−1) = 𝑛 − (𝑘 + 1) (22b) 

In the last equation, the invariance property of the trace operator over cyclic permutation was used. 

Specifically, 𝑇𝑟(𝐴𝐵𝐶) = 𝑇𝑟(𝐶𝐴𝐵). 

Since H has n eigenvalues, all equal to 1 or 0, and since their sum is equal to n-k-1, then n-k-1 must be 

equal to 1, and k+1 equal to 0. This can be used to obtain the spectral decomposition of the matrix I-H: 

 𝐼 − 𝐻 = 𝐴𝐷𝐴𝑇; (23) 

The matrix D can be written as 

 𝐷 = (
𝐼𝑛−𝑘−1 0[𝑛−𝑘−1][𝑘+1]

0[𝑘+1][𝑛−𝑘−1] 0[𝑘+1][𝑘+1]
); (24) 

Since I-H is symmetric, A is orthogonal, i.e. 𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼. Since 

 𝐻𝑋 = 𝑋 ⇒ (𝐼 − 𝐻)𝑋 = 0 ⇒  𝐴𝐷𝐴𝑇𝑋 = 0 ⟹ 𝐷𝐴𝑇𝑋; (25) 

Hence 

 (𝐴𝑇𝑋)𝑖𝑗 = 0 for i=1,…,n-k-1 and j=1,…,n-k-1. (26) 

So that 

 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 = 𝑌𝑇𝐴𝐷𝐴𝑇𝑌 = ∑ (𝐴𝑇𝑌)𝑖
2

𝑛−𝑘−1
𝑖=1 , (27) 

Now, since 𝑌~𝑁(𝑋𝛽, 𝜎2𝐼), then 𝐴𝑇𝑌~𝑁(𝐴𝑇𝑋𝛽, 𝜎2𝐴𝑇𝐴) = 𝑁(𝐴𝑇𝑋𝛽, 𝜎2𝐼), so that the components of 

𝐴𝑇𝑌 are independent. Since the sum of the square of p independent normal variates of variance 𝜎2 is a 

chi-square distribution with p degrees of freedom, than the RSS is distributed as chi-square distribution 

with n−k−1 degrees of freedom. From this 𝜎2can be calculated as 

 𝜎2 =
𝑅𝑆𝑆

𝑛−𝑘−1
 (28) 

 

4. Calculation of the standard error of coefficients �̂�𝒌 

To calculate the error, first calculate the expected value of �̂�𝑘, 𝐸(�̂�). Using equation 15, we get: 

 𝐸(�̂�) = 𝐸[(𝑋𝑇𝑋)−1𝑋𝑇𝑌]. (29) 

Since (𝑋𝑇𝑋)−1𝑋𝑇 are fixed, they are considered constants, so that 

 𝐸(�̂�) = (𝑋𝑇𝑋)−1𝑋𝑇𝐸[𝑌]. (30) 
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Now we can use equation 2: 

 𝐸(�̂�) = (𝑋𝑇𝑋)−1𝑋𝑇𝐸(𝑋𝐵 + 𝐸), (31a) 

 𝐸(�̂�) = (𝑋𝑇𝑋)−1𝑋𝑇𝐸(𝑋𝐵) + (𝑋𝑇𝑋)−1𝑋𝑇𝐸(Ε), (31b) 

Since 𝐸(𝑋𝐵) = 𝑋𝐵 and 𝐸(Ε) = 0, the equation simplifies to: 

 𝐸(�̂�) = (𝑋𝑇𝑋)−1𝑋𝑇𝑋𝐵 + (𝑋𝑇𝑋)−1𝑋𝑇0 = 𝐵, (32) 

To calculate the variance, for a matrix A and a vector y,  it is known that 𝑉𝑎𝑟(𝐴𝑦) = 𝐴𝑉𝑎𝑟(𝑦)𝐴𝑇. Hence 

 𝑉𝑎𝑟(�̂�) = 𝑉𝑎𝑟((𝑋𝑇𝑋)−1𝑋𝑇𝑌), (33a) 

 𝑉𝑎𝑟(�̂�) = [(𝑋𝑇𝑋)−1𝑋𝑇]𝑉𝑎𝑟(𝑌)[(𝑋𝑇𝑋)−1𝑋𝑇]𝑇, (33b) 

Since 𝑌 = 𝑋𝐵 + 𝐸, 𝑉𝑎𝑟(𝑌) = 𝜎2𝐼, where I is the identity matrix. Hence 

 𝑉𝑎𝑟(�̂�) = [(𝑋𝑇𝑋)−1𝑋𝑇]𝜎2𝐼𝑋[(𝑋𝑇𝑋)−1]𝑇, (34a) 

 𝑉𝑎𝑟(�̂�) = 𝜎2(𝑋𝑇𝑋)−1(𝑋𝑇𝑋)[(𝑋𝑇𝑋)−1]𝑇, (34b) 

 𝑉𝑎𝑟(�̂�) = 𝜎2[(𝑋𝑇𝑋)𝑇]−1 = 𝜎2(𝑋𝑇𝑋)−1, (34c) 

The standard errors on coefficients are therefore 

 𝑆𝛽�̂�
= 𝜎√(𝑋𝑇𝑋)𝑗𝑗

−1 = √
𝑅𝑆𝑆

𝑛−𝑘−1
(𝑋𝑇𝑋)𝑗𝑗

−1, (35) 

The matrix 𝜎2(𝑋𝑇𝑋)−1 is the covariance matrix. 

5. Confidence interval of parameters  

The t-values of the coefficients can be computed as:  

 𝑡 =
𝛽𝑗−0

𝑆𝛽�̂�

, (36) 

From the t-value, the (1 − 𝛼) ×100% Confidence Interval for each parameter can be calculated by:  

 𝛽�̂� − 𝑡(𝛼

2
,𝑛−𝑘−1)𝑆𝛽�̂�

≤ 𝛽�̂� ≤ 𝛽�̂� + 𝑡(
𝛼

2
,𝑛−𝑘−1)𝑆𝛽�̂�

, (37) 

If the regression assumptions hold, we can perform the t-tests for the regression coefficients with the null 

hypotheses and the alternative hypotheses:  

 𝐻0 :𝛽𝑗 = 0, (38a) 

 𝐻1:𝛽𝑗 ≠ 0, (38b) 

With the t-value, we can decide whether to reject the corresponding null hypothesis. Usually, for a given 

Confidence Level for Parameters: α, we can reject 𝐻0 when |𝑡| > 𝑡𝛼/2 . Additionally, the p-value is less 

than α.  
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Prob>|t| 

This is the probability that 𝐻0 in the t test is true, which is calculated as  

 𝑝𝑟𝑜𝑏 = 2(1− 𝑡𝑐𝑑𝑓(|𝑡|, 𝑑𝑓𝐸𝑟𝑟𝑜𝑟 )), (39) 

where 𝑡𝑐𝑑𝑓(|𝑡|, 𝑑𝑓𝐸𝑟𝑟𝑜𝑟 ) is the cumulative distribution function of the Student's t distribution at the 

values |t|, with degree of freedom of error 𝑑𝑓𝐸𝑟𝑟𝑜𝑟 = 𝑛 − 𝑘 − 1.  

 

6. Calculation of prediction and confidence bands 

The confidence interval for the fitting function says how good the estimate of the value of the fitting 

function is at particular values of the independent variables. In other words, the correct values for the 

fitting function lies within the confidence interval with confidence level 100α%, which is given by 

 �̂� ± 𝑡𝛼

2
,𝑛−𝑘−1

𝜎(𝑋∗𝑇(𝑋𝑇𝑋)−1𝑋∗), (40) 

where 

 𝑋∗ = [

𝑥0

𝑥1

⋮
𝑥𝑘

] (41) 

is a (k+1)×1 column vector calculated at a given x value. Similarly, the prediction interval for the confidence 

level is the interval within which 100 of all experimental data points in a series of repeated measurements 

are expected to fall at particular values of the independent variables. This is given by 

 �̂� ± 𝑡𝛼

2
,𝑛−𝑘−1𝜎(1 + 𝑋∗𝑇(𝑋𝑇𝑋)−1𝑋∗). (42) 

 

7. Weighted fitting 

In some cases, it is convenient to use weighted fitting. The weight of each point is set to 1 by default. 

Usually, the weights are given by 𝑤𝑖 = 𝜎𝑖  or 𝑤𝑖 = 1/𝜎𝑖
2, where is the error on the point 𝜎𝑖 . The weight 

matrix W is therefore 

 𝑊 = [

𝑤1 0
0 𝑤2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝑤𝑛

] (43) 

 

The matrix 𝑋𝑇𝑋 is replaced by 𝑋𝑇𝑊𝑋  in most equations. The RSS is now given by 

 ‖Ε‖2 = ∑ 𝑤𝑖휀𝑖
2𝑛

𝑖=1 = ∑ 𝑤𝑖(𝑦𝑖
− ∑ 𝛽

𝑗
𝑥
𝑖

𝑗𝑘
𝑗=0 )

2
𝑛
𝑖=1 , (44) 

The coefficients are given by 
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 �̂� =

[
 
 
 �̂�0

�̂�1

⋮
�̂�𝑘]

 
 
 

= (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌, (45) 

 

7. Fix Intercept (at) 

Fix intercept will set the y-intercept 𝛽0  to a fixed value. In this case, the total degree of freedom will be 

n*=n due to the intercept fixed. The matrix X and B are changed to 

 𝑋 =

[
 
 
 𝑥1 𝑥1

2

𝑥2 𝑥2
2

⋯ 𝑥1
𝑘

⋯ 𝑥2
𝑘

⋮ ⋮
𝑥𝑛 𝑥𝑛

2
⋱ ⋮
⋯ 𝑥𝑛

𝑘]
 
 
 

; 𝐵 = [

𝛽1

𝛽2

⋮
𝛽𝑘

]; (46) 

 

i.e. X of dimension n×k, and B is a k×1 dimension column vector. Prior solving the system of equations, the 

values yi should be translated by the desired fixed intercept 𝛽0 . 

8. Correlation matrix 

The correlation matrix is calculated using the elements 𝐶𝑜𝑣(𝛽𝑖 , 𝛽𝑗) of the covariance matrix 

𝜎2(𝑋𝑇𝑊𝑋)−1. The elements 𝜌𝑖𝑗are calculated as follows: 

 𝜌𝑖𝑗 =
𝐶𝑜𝑣(𝛽𝑖,𝛽𝑗)

√𝐶𝑜𝑣(𝛽𝑖,𝛽𝑖)√𝐶𝑜𝑣(𝛽𝑗,𝛽𝑗)
, (47) 

 

9. The C++ code 

The C++ code can be found at https://github.com/nasa/polyfit. It can be compiled in Linux using the 

command 

g++ -o PolyFit PolyFit.cpp 

The C++ code has been tested on Linux, but since it is written in basic C++, it can be compiled on other 

platforms.  

The main subroutine requires the input values to be suitable, and the code performs only minimal 

validation. If a weighted fit is used, the weight values for all points should be greater than 0. It is also 

recommended to order the data points by increasing x values. 

The calculation of critical values for the student-t test and the F test (ANOVA) requires the evaluation of 

special functions, which is beyond the scope of this text. Similarly, the calculation of the inverse of a matrix 

is a basic problem in linear algebra.  

 

 

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

https://github.com/nasa/polyfit


10. Example 

The following example was done with the program, and compared to the fitting provided by the Origin® 

software. 

X Y Y error 
0 0 0.1 

0.5 0.21723 0.3 

1 0.43445 0.2 

2 0.99924 0.4 

4 2.43292 0.1 

6 4.77895 0.3 

 

Fitting parameters: Polynomial degree: 2. Intercept not fixed. Error weighted as 𝑤𝑖 = 1/𝜎𝑖
2. The results 

are: 

 

Param Value Standard error t-value Prob>|t| 
 Polyfit Origin Polyfit Origin Polyfit Origin Polyfit Origin 

𝛽0  0.0173268 0.01733 0.0315352 0.03154 0.549445 0.54944 0.620957 0.62096 
𝛽1 0.261372 0.26137 0.0406847 0.04068 6.42433 6.42433 0.00764445 0.00764 
𝛽2  0.0868543 0.08685 0.00850808 0.00851 10.2085 10.20845 0.00200349 0.002 

 

Statistics 

 Polyfit Origin 

Number of Points 6 6 
Degrees of Freedom 3 3 
Residual Sum of Squares 0.339429 0.33943 
R-Square (COD) 0.999268 0.99927 
Adj. R-Square 0.998779 0.99878 

 

ANOVA (Polyfit) 

 DF Sum squares Mean Square F value Prob >F 
Model 2 463.082 231.541 2046.44 1.98483e-05 
Error 3 0.339429 0.113143   
Total 5 463.421    

 

ANOVA (Origin) 

 DF Sum squares Mean Square F value Prob >F 

Model 2 463.08155 231.54077 2046.44269 1.98226E-5 
Error 3 0.33943 0.11314   
Total 5 463.42097    
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Covariance matrix (Polyfit) 

 𝛽0  𝛽1 𝛽2  

𝛽0  0.000994467 -0.00062013 8.63062e-05 

 𝛽1  -0.00062013 0.00165525 -0.00033444 

𝛽2  8.63062e-05 -0.00033444 7.23874e-05 

 

Covariance matrix (Origin) 

 𝛽0  𝛽1 𝛽2  

𝛽0  9.94467E-4 -6.2013E-4 8.63062E-5 

 𝛽1  -6.2013E-4 0.00166 -3.3444E-4 

𝛽2  8.63062E-5 -3.3444E-4 7.23874E-5 

 

Correlation matrix (Polyfit) 

 𝛽0  𝛽1 𝛽2  

𝛽0  1 -0.483344 0.321674 

𝛽1 -0.483344 1 -0.966174 

𝛽2  0.321674 -0.966174 1 

 

Correlation matrix (Origin) 

 𝛽0  𝛽1 𝛽2  
𝛽0  1 -0.48334 0.32167 
𝛽1 -0.48334 1 -0.96617 
𝛽2  0.32167 -0.96617 1 
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Prediction and confidence bands 

 

Figure 1. Polynomial fit, 95% confidence and 95% prediction bands as calculated by Polyfit (points) and 

Origin® (lines). The two calculations are indistinguishable.  

 

11. Conclusion 

We have reviewed the calculation of a polynomial fit of data, and relevant calculations such as the 

standard error and confidence intervals on the coefficients, correlation matrix, covariance matrix, and the 

95% prediction and confidence bands. Several cases have been considered: fixed or variable intercept, 

and weighted coefficients. One case has been evaluated using the program, and compared with the results 

obtained by Origin®. In general, all calculations performed by Polyfit are identical to those made using 

Origin®, with small differences attributable to the precision limit. 
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