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Abstract

In radiobiology, many dose-response results are modeled using the so-called linear-quadratic (LQ) model,
which means that results are modeled as a function of dose D as R(D) =, + 1D + f,D?. The
coefficients f3,, f; and 3, are obtained from fitting a series of data points (x;,y;), which is usually done
using a least-square method. The LQ and more generally the polynomial fit capability is implemented in
many software that analyzes data. However, it is often convenient to do the fitting programmatically,
especially when a large number of datasets should be analyzed. Furthermore, depending on the software
used, some features may not be implemented. In this mini-review, | discuss the basis of polynomial fitting,
including the calculation of errors on the coefficients andresults, use of weighting and fixing the intercept
value (the coefficient f;). A simple C++ code to perform the polynomial curve fitting is also provided. This
code should be useful not only in radiobiology but in other fields of science as well.

1. Introduction

For a given dataset (x;,y;),i = 1,2, ..., n, where x is the independent variable and y is the dependent
variable, a polynomial regression fits data to a model of the following form:

Vi =Bo+ Prxi + Pox? 4+ 4 fxl + g = ?:o Bix] + ¢ (1)

where k is the polynomial order. In general, kis a small integer number. The parameters f3;, are estimated
using a weighted least-square method. This method minimizes the sum of the squares of the deviations
betweenthe theoretical curve and the experimental points for a range of independent variables (Chernov,
2010).

The quantity f3, is the y-intercept and the parameters 1, B, ..., [ are the "partial coefficients" (or
"partial slopes"). The set of equations (1) canbe written conveniently in matrix form:

Y=XB+E, (2)
where
V1 [1 %, x2 - xf] Bo &
O A B T B T A T @)
n [1 Xp X5 - xﬁJ i €n

Y is a nx1 column vector, X is a nx(k+1) matrix, B is a kxI column vector, E is a nx1 column vector.

Furthermore, ¢&; are distributed as normal random variables with E=0and Var(E) = o2
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2. Calculation of the coefficients f3,

To calculate the coefficients B that minimize the error ||E||?, the derivates with respect to B are
calculatedand set equal to O:

allElI

o =0 @

wherem = 0, ..., k. This can be written explicitly as

IEN2 = Ty & = T - o) (52)

IEN? = X7y (v? — 2y, S0 B0 + 2o Bh o 8,822, (5b)
So that

allEN?

aﬁm - ?:1(_2}11'2 x/6]m+z OZi( 06]mﬁ1x1+l+2 02 0,8 Slmxﬁ-l) (6

where 6 is the Kronecker delta. This simplifies to

allEI* _
Bm

Changing summation indices simplifies the equation further:

?:1(_23’ X" +Z —oB; % AR Z 0:8 x]+m)- (7)

JIIEI? _ .
Bm i=1(= 2y + 22 'Bj)/i )- (8)
Equating to 0, the following equations are obtained (m =0, ..., k ):
j+
Loy = B T o

These equations canalso be writtenin matrixform as

Z r n in lez in( 'I
ny;l szl lez Zx? Zxk+1| ,[;0

El 3 :szf le3 Zx;l’ vee Z k+2| 1 , (10)
Yxk ' : : :

L le’-‘ inﬁl Zx;wz Zx;HkJ

where all sums runs from i=1 to n. This can be further expressed with the matrices X, Y and B defined

earlier:
1 1 1 -1 1 1 1 o 1ML xg x2
Xy Xz X3 - xp X3 e Il Xz xz (11)
X’f xlzc x’?f e X k X xn ll xn xn

X7y = X" XB, (12)

S=
W

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.



where X7 is the transpose of X. Therefore B can be expressed in matrix form as

B=X"X)"1XTy. (13)

The result B is the least square estimate of the vector B, and it is the solution to the linear equations,
which can be written as:

[Bo]
B= llﬁ_lJl = (XTX)"1XTY, (14)
B

The predicted value of Y for a given Xis:
Y = XB, (15)
By substituting B into (15), we define the matrix H as:

Y = [X(XTX)"1XT]Y = HY, (16)
Note these important properties of the matrix H:

HT = [X(XTX)1XT]T = XDHT[(XTX)TXT = X[(XTX)T]"1XT =H, (17a)

H? = [X(XTX)XT][X(XTX)"1XT] = H, (17b)
So that His an idempotent matrix, i.e. H2 = H = HT.

3. Theresidualsumof squares
The residuals are defined as:

res; =y;—y, (18)
and the residual sum of squares (RSS) canbe written by:

RSS = ¥ (vi —9)* = l[EII%, (19)
The RSS can also be written using

—_yn 512 — 7\ V) — T
RSS =31, (yi~9)?=(Y =7) (Y =7) = (¥ =HN)"(Y - HY), (20a)
RSS=Y"(I,-H" )U,—H)Y=Y"(I,—H—H" +H H)Y =Y"(I,— H)Y, (20b)

Where I, is anidentity matrix with n elements. Since H2 = H, it can be shown that the eigenvalues of this
matrix are either 0 or 1:

Hv = lv; (21a)
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H?v= H(Hv) = H(lv) = lHv = v (21b)

So that [? = L. This implies that I = 0 or [ = 1. Furthermore, the sum of the eigenvalues equals the trace
of the matrix, so that

Tr(l,—H) =Tr(I,)—Tr(H) =n—-Tr(X(XTX)"1xT) (22a)
Tr(l,—H) =n—Tr(X"X)(X"X)" ) =n—(k+ 1) (22b)

In the last equation, the invariance property of the trace operator over cyclic permutation was used.
Specifically, Tr(ABC) = Tr(CAB).

Since H has n eigenvalues, all equal to 1 or 0, and since their sum is equal to n-k-1, then n-k-1 must be
equal to 1, and k+1 equal to 0. This can be used to obtain the spectral decomposition of the matrix /-H:

I —H = ADAT, (23)

The matrix D can be writtenas

| S Orp—p—
D =< n—k-1 [n—-k 1][k+1]>; (24)
0[k+1][n—k—1] 0[k+1][k+1]

Since /-H is symmetric, A is orthogonal, i.e. ATA = AAT = I. Since

HX=X=>((—-H)X=0= ADATX=0 = DATX; (25)
Hence
(ATX);; = 0 for i=1,...,n-k-1 and j=1,..,, n-k-1. (26)
So that
2
RSS =¥ (y; —9)? =Y ADA"Y = 3=} 1(A"Y);, (27)

Now, since Y~N(XB,02I), then ATY~N(ATXB,02ATA) = N(ATXpB, 021), so that the components of
ATY areindependent. Since the sum of the square of p independent normal variatesof variance o2 is a
chi-square distribution with p degrees of freedom, than the RSS is distributed as chi-square distribution
with n-k-1 degrees of freedom. From this g?canbe calculated as

o2 = nfif - (28)

4. Calculation of the standard error of coefficients 3,
To calculate the error, first calculate the expectedvalue of S, E(B). Using equation 15, we get:

E(B) = E[(X"X)"1XTY]. (29)
Since (XT X)~1XT arefixed, they are considered constants, so that

E(B) = (XTX)"1XTE[Y]. (30)
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Now we can use equation 2:
E(B) = (X"X)"'XTE(XB + E), (31a)
E(B) = (XTX)"'XTE(XB) + (XTX)~1XTE(E), (31b)
Since E(XB) = XB and E(E) = 0, the equation simplifies to:
E(B) = (XTX)"1XTXB + (XTX)"1XT0 = B, (32)
To calculate the variance, for a matrix A and a vectory, it is known that Var(4y) = AVar(y)AT. Hence
Var(B) = Var((XTX)"1XTY), (33a)
Var(B) = [(X"X) "1 XTVar(Y)[(XTX)"1XT]", (33b)

SinceY = XB + E, Var(Y) = 021, wherel is the identity matrix. Hence

Var(B) = [(XTX)"1XT]162IX[(X"X)"1]", (34a)
Var(B) = a2(X"X) 1 (XTX)[(XTX) 717, (34b)
Var(B) = a2[(X"X)T]! = 02(XTX)71, (34¢)

The standard errors on coefficients are therefore

The matrix a2 (XTX) 1 is the covariance matrix.
5. Confidenceinterval of parameters

The t-values of the coefficients can be computed as:

Bj—0
t=——, (36)
5B

From the t-value, the (1 — @) X 100% Confidence Interval for each parameter can be calculated by:

B = tnsr)S5 S B S B+ @S, (37)

]l

Ifthe regression assumptions hold, we can perform the t-testsfor the regression coefficients with the null
hypotheses and the alternative hypotheses:

Hy:B; =0, (38a)

With the t-value, we candecide whetherto reject the corresponding null hypothesis. Usually, for a given
Confidence Level for Parameters: o, we can reject H, when |t]| > tajz- Additionally, the p-value is less
than a.
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Prob>|t|
This is the probability that H, in the t testis true, which is calculatedas
prob = 2(1 — tedf (|t], dfgrror ), (39)

where tcdf (|t], dfgror) is the cumulative distribution function of the Student's t distribution at the
values |t]|, with degree of freedom of error dfzy.or =1 — k — 1.

6. Calculation of prediction and confidence bands

The confidence interval for the fitting function says how good the estimate of the value of the fitting
function is at particular values of the independent variables. In other words, the correct values for the
fitting function lies within the confidence interval with confidence level 100a%, which is given by

9+ t%n_k_lo'(X*T(XTX)‘lX* ), (40)
where
xO
o _ |2t
x =" (41)
ok

is a (k+1)x1 column vector calculated at a given x value. Similarly, the prediction interval for the confidence
level is the interval within which 100 of all experimental data points in a series of repeated measurements
are expected to fall at particular values of the independent variables. This is given by

9+ ta o(1+xT(XTx)1x*). (42)

2,n—k—l

7. Weighted fitting

In some cases, it is convenient to use weighted fitting. The weight of each point is set to 1 by default.
Usually, the weights are given by w; = g; or w; = 1/0i2, where is the error on the point g;. The weight
matrix W is therefore

w; O 0
W= 0: Woo o 0 (43)
0 0 eee WTL

The matrix XT X is replaced by XWX in most equations. The RSS is now given by

-2
IEIZ = Sy wie? = Sy wi(y,— 2o B2, (44)

The coefficients are given by
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y O

ol
1 I = (XTWX)~1XTwy, (45)
|

o

Il
[————
= ...

k

7. Fix Intercept (at)

Fix intercept will set the y-intercept [, to a fixed value. In this case, the total degree of freedom will be
n*=n due to the intercept fixed. The matrix X and B are changedto

[x1 xf - x’ﬂ B
x=pz %o X.’Z‘J';B= 2l 4s)
X, x% o xK k

i.e. X of dimension nxk, and B is a kx1 dimension column vector. Prior solving the system of equations, the
values y; should be translated by the desired fixed intercept S,.

8. Correlation matrix

The correlation matrix is calculated using the elements Cov(f;, ;) of the covariance matrix
o2 (XTWX) ™. The elements p; jare calculated as follows:

Cov(BiBj)

Pij = Jeov BuBoycov BBy !

9. The C++ code

The C++ code can be found at https://github.com/nasa/polyfit. It can be compiled in Linux using the
command

g++ -0 PolyFit PolyFit.cpp

The C++ code has been tested on Linux, but since it is written in basic C++, it can be compiled on other
platforms.

The main subroutine requires the input values to be suitable, and the code performs only minimal
validation. If a weighted fit is used, the weight values for all points should be greater than 0. It is also
recommended to order the data points by increasing x values.

The calculation of critical values for the student-t test and the F test (ANOVA) requires the evaluation of
special functions, which is beyond the scope of this text. Similarly, the calculation of the inverse of a matrix
is a basic problem in linear algebra.
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10. Example

The following example was done with the program, and compared to the fitting provided by the Origin®

software.
X Y Y error
0 0 0.1
0.5 0.21723 0.3
1 0.43445 0.2
2 0.99924 0.4
4 2.43292 0.1
6 4.77895 0.3

Fitting parameters: Polynomial degree: 2. Intercept not fixed. Error weighted as w; = 1/ai2. The results

are:
Param Value Standard error t-value Prob>|t|
Polyfit Origin Polyfit Origin Polyfit Origin Polyfit Origin
Bo 0.0173268 | 0.01733 | 0.0315352 0.03154 | 0.549445 | 0.54944 | 0.620957 0.62096
By 0.261372 0.26137 | 0.0406847 0.04068 | 6.42433 6.42433 0.00764445 | 0.00764
B 0.0868543 | 0.08685 | 0.00850808 | 0.00851 | 10.2085 10.20845 | 0.00200349 | 0.002
Statistics
Polyfit Origin
Number of Points 6 6
Degrees of Freedom 3 3
Residual Sum of Squares | ©.339429 0.33943
R-Square (COD) 0.999268 0.99927
Adj. R-Square 0.998779 0.99878
ANOVA (Polyfit)
DF Sum squares | Mean Square | Fvalue Prob >F
Model 2 463.082 231.541 2046.44 1.98483e-05
Error 3 0.339429 0.113143
Total 5 463.421
ANOVA (Origin)
DF Sum squares | Mean Square F value Prob >F
Model 2 463.08155 231.54077 2046.44269 | 1.98226E-5
Error 3 0.33943 0.11314
Total 5 463.42097
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Covariance matrix (Polyfit)

Bo B B2
Bo 0.000994467 -0.00062013 8.63062e-05
By -0.00062013 0.00165525 -0.00033444
B 8.63062e-05 -0.00033444 7.23874e-05
Covariance matrix (Origin)
Bo B Bz
Bo 9.94467E-4 -6.2013E-4 8.63062E-5
By -6.2013E-4 0.00166 -3.3444E-4
Bo 8.63062E-5 -3.3444E-4 7.23874E-5
Correlation matrix (Polyfit)
Bo B Be
Bo 1 -0.483344 0.321674
By -0.483344 1 -0.966174
Bo 0.321674 -0.966174 1
Correlation matrix (Origin)
Bo B B2
Bo 1 -0.48334 0.32167
b1 -0.48334 1 -0.96617
B, |0.32167 -0.96617 1
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Prediction and confidence bands

7 1 L I 4 I = I 4 I L 1 % I
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Figure 1. Polynomial fit, 95% confidence and 95% prediction bands as calculated by Polyfit (points) and
Origin® (lines). The twocalculations are indistinguishable.

11. Conclusion

We have reviewed the calculation of a polynomial fit of data, and relevant calculations such as the
standard error and confidence intervals on the coefficients, correlation matrix, covariance matrix, and the
95% prediction and confidence bands. Several cases have been considered: fixed or variable intercept,
and weighted coefficients. One case has been evaluated using the program, and compared with the results
obtained by Origin®. In general, all calculations performed by Polyfit are identical to those made using
Origin®, with small differences attributable to the precision limit.
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