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ABSTRACT 

The biological effects of radiation can be divided into targeted and non-targeted depending on whether or 
not radiation energy has been absorbed by a cell under observation. Non-targeted effects (NTEs) are the 
result of intercellular communication between irradiated cells and unirradiated (i.e. non-targeted or 
bystander) cells.  The impact of NTEs on radiation risk is not well understood for simple radiation 
exposure scenarios and even less so for complex radiation fields such as those outside of earth’s 
atmosphere. Here we review the emerging role of extra-cellular vesicles, in particular exosomes, in the 
biological processes responsible for NTEs. Exosomes carry various cargo such as nucleic acids, proteins 
and metabolites, and they are exchanged between cells giving them the capability to act as intercellular 
messengers in the initiation of NTEs. Ionizing radiation modulates release of exosomes and the cargo they 
contain, and these exosomes induce functional changes in recipient cells. There are, however, large gaps 
in our current knowledge, particularly relating to altered exosomal loading following radiation as well as 
the functional effects induced by exosomes in recipient cells. A better understanding of NTEs, including 
the role of exosomes, will be required before they can be incorporated into radiation risk assessment or 
mitigation of radiation effects.   
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INTRODUCTION 

The classical understanding of radiation biology centers around damage to a biological target through 

direct traversal by radiation, usually 

considered to be nuclear DNA. Ionizing 

radiation can damage DNA resulting in a 

DNA damage response that can either 

faithfully repair the damage or misrepair 

the damage  

 Radiation-induced genomic 

instability (GI) is a genome-wide process. 

It is characterized by an increased rate of 

cytogenetic abnormalities, mutations, gene 

amplifications, transformation, and cell 

death in the progeny of irradiated cells 

many generations after the initial insult. 

The characteristics of the instability 

depend on several factors including cell 

and tissue genetic background, radiation 

type, dose and dose rate, and the test 

system being studied (5-8). The 

mechanisms behind this process involve 

epigenetic factors (9-12), oxidative stress 

and inflammatory signals (13-20).  There 

is also evidence to suggest bystander 

effects have the potential to induce GI in 

some circumstances (5, 18, 21-24).  Bystander effects have been documented in several experimental 

Figure 1 (A and B) 

 Figure 1: Basic overview of responses to radiation. A. Classical 
theories identified radiation can cause extensive damage to nuclear 
DNA. If the damage is too complex the cell may commit to cell 
death; alternatively there are a number of repair mechanisms by 
which to correct this damage. If the cell correctly repairs this 
damage it is expected to divide and proliferate as normal. 
However, in some cases the damaged DNA is repaired incorrectly 
introducing mutations or gross chromosomal aberrations. As these 
cells divide, the mutation or chromosomal aberration is passed on 
to both daughter cells and is present across all the progeny and is 
said to be clonal. B. Non-targeted effects add to this theory where 
clonal damage can still occur but other processes are ongoing that 
lead to GI. Initially for some undefined period of time the cells 
appear normal. However, with time, the cell population may 
develop a range of aberrations that are not consistent across the 
progeny indicating that they are likely to have occurred de novo to 
that cell cycle following the first cell division. The increased rate at 
which de novo aberrations arise is defined as genomic instability. 
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systems  both in vitro and in vivo (25, 26)  and have been observed following a variety of radiation types, 

doses and exposure protocols, including those more like space radiation than the alpha particles used in 

early work (27, 28). Bystander Effects are 

also triggered by very low doses, as low as a 

single high-LET particle (29-32), and have 

an off-to-on dose response without further 

increase in measured effects above the 

triggering dose. Bystander Effects can 

recruit naïve cells into expressing the same 

response  phenotypes as that of irradiated 

cells, despite the cells never having being 

traversed by IR; instead the effects are 

induced through the transfer of a signal from 

irradiated to unirradiated cells (Figure 2) 

(33).  The causative signals are likely to 

include cytokines, reactive oxygen species 

and epigenetic regulators such as miRNA 

(34-37). Irradiated cells can distribute one or 

more signals through two routes; firstly, 

between adjacent irradiated and unirradiated 

cells linked by gap junctions (38), and secondly through secretion of signaling molecules into the 

extracellular environment (39). The latter has recently been shown to involve the transfer of signals 

through extracellular vesicles (EVs) (40). 

 

 

Figure 2 

Figure 2 shows the transfer of signals from irradiated cells to 
unirradiated cells (bystander effects). The box showing transfer of 
soluble molecules shows transfer between cells connected by 
gap junctions but this is not always the case. Many studies using 
irradiated cell conditioned media (ICCM) (i.e. no gap junctional 
communication) have shown the transfer of soluble molecules 
between irradiated and unirradiated cells.  
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In this review, we focus on EVs, in particular exosomes, as delivery vehicles for bystander 

signals and the downstream effects they have on neighboring cells with relevance to radiation-induced 

NTEs. 

 

EXTRACELLULAR VESICLES 

EVs are abundant in both in vitro cell culture systems as well as in vivo fluids including, amongst 

others, plasma, urine and saliva. Several subcategories of EVs exist including microvesicles, apoptotic 

bodies and exosomes. As shown in Table 1, the characteristics and attributes that define these vesicles are 

primarily based on size and presence or absence of certain biochemical markers (41-44). 

Exosomes are a class of EVs secreted by several cell types into the extracellular environment. 

The discovery of various important cargo such as mRNA, miRNA, DNA, protein , metabolites, lipids and 

other non-coding RNAs sparked interest in their function (45, 46). 

Exosomes are produced in the endosomal network; their membranes are composed of lipids and 

proteins (47). The proteins identified in exosomes are representative of endosomes and the plasma 

membrane but show very little overlap with other organelles such as the nucleus or Golgi apparatus. 

Despite their endosomal origin it is difficult to distinguish biochemically between plasma membrane-

derived vesicles and exosomes (48). The lipid membrane of EVs shows a distinct profile compared to 

conventional plasma membranes including enrichment in sphingomyelin, cholesterol, ceramide and 

phosphatidylserine, with some documented reductions in phosphatidylcholine (48-50).  

Exosomes cargo is selected for export rather than being a simple consequence of what is present in the 

cell at that time. Upon the appropriate cues these vesicles are shuttled to the cell membrane and released 

into the extracellular environment. (51-54). Exosomes can be taken up by neighboring cells in the 

immediate vicinity or transported via the blood stream to distant sites. Cells take up exosomes through a 

variety of processes and cargo is released within the recipient cell, with several studies showing this cargo 

is often functional within the recipient cell (55-60). 
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    A consensus is beginning to develop around exosomes as mediators of intercellular communication in 

carcinogenesis and metastasis (61), with the apparent ability to promote angiogenesis, alter fibroblasts to 

become cancer-associated fibroblasts, sequester anticancer therapeutics, modulate the immune system, 

and alter distant microenvironments to help circulating cancer cells establish a metastatic site (62, 63). It 

is still not completely clear how their function changes with cell type and the stresses put on the cell (19, 

64, 65).  

Table 1: Extracellular vesicle descriptions in the literatures 

Name Description Reference 
Apoptotic 
bodies 

They are variable size, 500– 2000 nm in diameter; consist of 
cytoplasm with tightly packed organelles.  
Extensive plasma membrane blebbing occurs followed by 
karyorrhexis and separation of cell fragments during a process 
called ‘budding’. 

(66, 67) 

Ectosomes Membrane microvesicles derived from neutrophils or 
monocytes. They vary from 100 to 1000 nm. The doubt is 
whether vesicles larger than 350-400 nm are true ectosomes.  
They are small shedding membrane vesicles, budded directly 
from cell membrane. 

(68, 69)  

Exosomes They are homogenous membrane bound vesicles with size of 
40-100nm in diameter. They are derived from the endocytic 
recycling pathway. In endocytosis, endocytic vesicles form at 
the plasma membrane and fuse to form early endosomes. 
These mature and become late endosomes where intraluminal 
vesicles bud off into an intra-cytoplasmic lumen. Instead of 
fusing with the lysosome, these multivesicular bodies directly 
fuse with the plasma membrane and release exosomes into the 
extracellular space. CD63, CD9 and TSG101 can be 
considered as exosomal markers. 

(70-73)  

 

EXOSOMES AND RADIATION-INDUCED BYSTANDER EFFECTS 

The fact that exosomes can have such potent effects in a diverse and complicated environment 

poses interesting questions in relation to radiation biology, some of which are especially pertinent to the 

complex mixture of radiation types of interest to space exploration. For example: 

(1) Is exosome number dependent on cell type, radiation quality, dose rate, or total dose? 

(2) How does exosomal loading change under the conditions above. 
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(3) Does exosome-mediated communication offer a mechanistic link between the bystander effect 

and GI? 

(4) To what extent does the radiation release of exosomes contribute to the cellular response to 

radiation exposure and ultimately to the risk of developing cancer?  

Exosome-related research within radiation biology is a relatively new field; however research 

already shows exosomes are an essential component of the cellular response as detailed below. Ionizing 

radiation is a known activator of p53 (25); p53 can also function to regulate exosome release (26, 74, 75). 

This suggests p53 might regulate exosomes under cellular stress such as caused by ionizing radiation. 

Exosome uptake is also increased in response to radiation through the formation of CD29/CD81 

complexes (65). However, it is likely that alteration in the cargo may also be essential in inducing 

bystander effects. Al-Mayah et al. 2012 were some of the first to explore this when they documented that 

exosomes from irradiated MCF7 cells carried bystander signaling molecules capable of inducing early 

and persistent chromosomal damage, and provided evidence the signal is mediated through exosomal 

protein and RNA. Since then work has been ongoing to further explore exosome contents as potential 

inducers of bystander effects (76). There is evidence to suggest a variety of contents are responsible for 

exosome-mediated radiation-induced bystander effects. The miRNAs have been most extensively studied; 

they are small RNA sequences approximately 22 nucleotides in length. They have been implicated in a 

number of processes, particularly gene expression, providing an epigenetic form of post-transcription 

gene regulation (77). They are able to affect a number of responses such as metabolism, immune 

response, proliferation, differentiation and migration. miRNAs are highly abundant in exosomes, with one 

report suggesting 42% of nucleic acid content was miRNA with the remainder composed of other types of 

RNA including ribosomal, piwi interacting and transfer (78). Exosome miRNA content also differs from 

that of the parent cell, suggesting the loading process is not random and certain miRNAs are actively 

sorted into exosomes (79).  How loading changes in response to external stimuli such as ionizing 

radiation is under investigation and will be important to consider for radiation-induced NTE.  
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Research into the exosome-mediated bystander effect has started to investigate exosomal 

miRNA’s and the associated pathways with which they interact (40, 76, 80-83).  Exosomes isolated from 

cells irradiated with 60Co γ-rays at a dose rate of 1.98 Gy/min at room temperature showed several 

enriched miRNA’s including miR-7-5p (84). This miRNA was shown to influence the EGFR/Akt/mTOR 

pathway in the recipient human bronchial epithelial cell line BEP2D, ultimately increasing levels of 

autophagy. Transfer of miR-21 in exosomes from irradiated cells has also been documented. Increased 

micronuclei formation was attributed in part to the effect of miR-21 on its gene targets. Although no 

mechanism for micronuclei induction was presented, there is evidence elsewhere that miR-21 is a potent 

onco-miR (85, 86) and its expression can remove control at the G1/S phase cell-cycle transition; this 

could potentially account for the formation of micronuclei (40, 76, 80-82)..   

Exosomal miRNA transfer and associated bystander effects have also been observed in vivo by 

Tang et al. (2016), who reported differential miRNA expression profiles from patients pre/post 

radiotherapy. Nine miRNAs were downregulated while one, miR-208a, was significantly upregulated. 

Exosomes from irradiated cells enriched for miR-208a were shown to be internalized by the A549 cell 

line. The delivery of miR-208a induced a radioresistant phenotype likely through its effects on the 

p21/Waf1 pathway (87). Others have also observed a prosurvival effect induced by exosomes from 

irradiated cells, this time thought to be elicited through triggering DNA repair (57). 

  miRNA is not the only component of exosomes capable of inducing bystander effects. Arscott et 

al. (2013) identified exosomes from irradiated cells as having the ability to induce functional changes in 

unirradiated bystander cells through mRNA and protein delivery. The imported mRNA transcripts coded 

for proteins associated with cellular movement such as CTGF. As a result protein levels of CTGF also 

increased as did cell migration (88). 

Other nucleic acids such as long noncoding RNA (lncRNA) have been found to be associated 

with exosomes. The lncRNA are RNA molecules in excess of 200 bp and do not code for a protein (89); 

however, they have been shown to be involved in processes such as protein synthesis, RNA maturation 

and even regulating chromatin structure (89-91). lncRNA named “PARTICLE” increased after low dose 
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exposure at the 24 hour post-irradiation timepoint. PARTICLE repressed the expression of MAT2A by 

controlling the methylation status of its upstream promotor CpG islands (92). This highlights the ability 

of exosomes from irradiated cells to act epigenetically in bystander cells, a mechanism that could be 

crucial in understanding bystander effects and their links to genomic instability, reviewed by Hewson and 

Morris in 2016 (93).  

Exosomes are also known to carry protein. Exocarta has listed 41,860 entries for proteins in 

exosome fractions. In terms of functional effects, Jelonek et al., (2015) performed a proteomic analysis on 

exosomes from control and irradiated FaDu cell line derived from human head and neck squamous cell 

carcinoma (HNSCC) with a 2 Gy dose of 6 MeV photons using the linear accelerator Clinac 600 and 

incubated for 18 hours before exosome isolation. They found 236 up-regulated proteins and 69 down-

regulated proteins. These proteins were annotated with gene ontology (GO) terms, the up-regulated terms 

included “mRNA metabolism”, “viral process”, “RNA metabolic process”, and “DNA damage response, 

signal transduction by p53 class mediator resulting in cell cycle arrest” (94) . Specific functional changes 

have also been observed by Baluch et al., (2016) who demonstrated that microvesicles from irradiated 

cells could increase matrix metalloproteinase activity in unirradiated cells which increased their 

invasiveness, although not through direct transfer of the enzymes themselves (95). Other investigations in 

ex vivo peripheral blood mononuclear cells (PBMCs) have shown a difference in exosome protein content 

post irradiation with 60 Gy g-rays; exosome release was increased by three-fold, the differential 

expression however was relatively modest with approximately 10 proteins showing increased presence 

following irradiation (26), albeit this was performed with 2D electrophoresis which offers limited 

resolution compared to more sophisticated mass spectrometry. Recent studies reported that exosomes 

contain genomic DNA .  This exosomal DNA (exoDNA) represents the entire genome, and for tumors it 

reflects the mutational status of parental cancer cells (83, 96). These findings suggest that (exoDNA) can 

be used to identify mutations present in the parental tumor, thus illustrating significant translational 

potential as a circulating biomarker for cancer in the clinic. However, the mechanism of how DNA enters 
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the exosomes is as yet unknown, and the feasibility of using exosomal DNA in diagnosis and therapy of 

cancer has yet to be demonstrated. 

 

CONCLUSIONS 

The mechanisms of ionizing radiation-induced NTEs are not as yet fully understood. It is, 

however, known that 1) exosomes play an essential role in delivering signals from irradiated cells to naïve 

bystander cells, and 2) exosomes produced and released from initiated cells further spread the effects of 

radiation by initiating other naïve bystander cells. Additionally the evolution from a short-term bystander 

effect into persistent GI is accompanied by exosome production in the progeny of cells expressing GI (40, 

76). This latter observation suggests that exosome production, release, and internalization may be at least 

partially responsible for perpetuating an unstable phenotype. The cargo carried within exosomes can act 

through a variety of mechanisms including proinflammatory signaling, modification of the extracellular 

environment, and epigenetics within the cell. These processes are important to understand in the context 

of radiation biology. Exosome-mediated intercellular communication has only been investigated to a 

limited extent in radiation-induced NTEs, with both exosomal protein and RNA being implicated in 

bystander effects at both early and delayed time-points.  

Whether exosomes have roles in the bystander effect and GI that extend beyond signaling is less 

clear. Exosomes and extracellular vesicles are known to carry numerous other contents such as 

metabolites, amino acids and lipids. These molecules have been shown to induce functional effects in 

recipient cells, for example metabolic switching after the delivery of metabolites, or induction of 

inflammation after lipid delivery (58). These aspects have yet to be explored in relation to radiation 

biology. 

 Although seminal research on genomic instability and bystander effects was conducted using high 

LET alpha particles, studies of exosomes in the radiation response are currently limited to low LET 

photons. In contrast, the space radiation environment is composed mainly of high and low LET energetic 
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charged particles. Given this gap in our knowledge, a focused research effort is required to answer such 

questions as:  

• Once initiated, are NTE the same regardless of the initiating radiation type?  

• Is the threshold for an initiating dose dependent on LET or the radial dispersion of energy 

deposition along charged particle tracks through cells and tissues (i.e. track structure)?  

• How do LET, track structure, dose and dose rate affect exosome packaging and release? 

Also required are quantitative models capable of linking initiating events – both physical (radiation) and 

molecular (intercellular signaling) – to biological responses. These models will be essential for 

incorporating NTE into radiation risk assessment and for evaluating the efficacy of countermeasures. 

Further, testing these models will challenge experimentalists to acquire datasets that are far more 

quantitative than currently available. In conclusion, the investigation of NTE has made substantial 

progress since their discovery but we are not yet positioned to evaluate potential health effects of NTE 

resulting from space radiation exposure. Achieving this goal will require a better understanding of the 

basic biology of NTE including exosome signaling, the dependence of NTE on radiation characteristics, 

and quantitative models of NTE. 
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