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ABSTRACT 

Developing a thorough understanding of the biological processes mediating the 

effects of low doses/low fluences of space radiation is relevant towards reducing the 

uncertainty in estimating the risk of their health hazards. During deep space travel, 

astronauts are exposed to a spectrum of energetic particles, among which are low 

fluences of high atomic number (Z) and high energy (E) (HZE) particles. These particles 

are densely ionizing and upon interaction with cells, cause severe oxidative injury and 

result in biological responses that are far less understood than those observed following 

irradiation with sparsely ionizing X and  rays. When cultured cell populations are 

exposed to low doses from HZE particles, a significant fraction of the cells are not 

traversed by a primary radiation track or its secondaries, yet oxidative stress is observed 

in nearby cells that were not irradiated. Furthermore, the stressful effects in these cells 

have been shown to persist in their progeny. The occurrence of such effects expands the 

target at risk and amplifies the biological effects resulting from direct irradiation. If these 

effects also to occur in the tissues of astronauts, then the elevated oxidative stress in 

progeny cells could disrupt physiological processes and may result in detrimental effects 

during space missions and long after mission completion. Oxidative stress promotes 

genomic instability and is intimately linked with increased risk of age-related diseases. 

While this paper summarizes a recent review of bystander effects induced by HZE 

particles, it stresses the need for studies of the cross-talks between biological responses to 

HZE particles and other types of space radiation within intact tissues, in order to better 

understand the response of the entire biological system.  
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INTRODUCTION 

During deep space exploration, many factors, including gravitational changes and 

exposure to ionizing radiation, induce cellular oxidative stress in astronauts. The space 

radiation environment is dynamic and primarily consists of protons, helium ions and high 

charge and high energy (HZE) particles, making it unique from the background radiation 

that humans encounter on earth. Although HZE ions constitute only a small component of 

galactic cosmic rays, their high biological effectiveness makes them a significant 

contributor to the effective dose received during missions in space. As HZE nuclei are 

highly charged, they are densely ionizing and therefore possess strong oxidizing power 

(1). Upon impact with biological material, they cause clustered oxidative damage in DNA 

and other molecules (2). For these reasons, the National Aeronautics and Space 

Administration (NASA) is greatly concerned about long-term health risks to astronauts 

(3), particularly during long-duration missions when exposure to ionizing radiation would 

easily exceed the applicable guidelines (4, 5).  The oxidative damage of nucleic acids, 

proteins, and lipids is directly linked to aging, cardiovascular disease, neurodegenerative 

disorders, and cancer among other pathologies (6, 7). In particular, recent work in cell 

culture models have shown that oxidative stress is not restricted to cells traversed by 

ionizing radiation but is propagated to nearby non-traversed cells (i.e. bystander cells).  

Therefore, understanding the various steps involved in HZE particle-induced cellular 

responses that lead to short- and long-term oxidative stress is important for evaluating the 

risk of health hazards during prolonged space travel and/or after return to earth. Elements 

of these steps have been described in a recent review on oxidative injury by targeted and 

non-targeted exposures to HZE ions (8).  

 

Non-targeted effects: A new paradigm 

It has long been considered that the important biological effects of ionizing 

radiation in a cell population are a direct consequence of DNA damage occurring in the 

directly irradiated cells, commonly referred to as the “targeted” cells: unrepaired or 

misrepaired DNA damage in these cells is responsible for the genetic effects of radiation. 

Presumably, no effect would be expected in cells in the population that receive no direct 
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radiation exposure, with such cells being referred to as “non-targeted” or bystander cells.  

However, during the past 25 years, a large body of experimental evidence has challenged 

the concept that radiation traversal through the nucleus of a cell is the only prerequisite 

for the production of genetic damage or an important biological response. In a landmark 

study in 1992, Nagasawa and Little showed that when less than 1% of nuclei in a 

monolayer cell culture are traversed by a densely ionizing α particle track, more than 

30% of the cells experience an increased frequency of sister-chromatid exchanges (9). 

Such findings were unexpected and led to a paradigm shift in understanding radiation 

effects (10). Since then, numerous cell culture experiments (almost exclusively 

monoculture) have shown that cells in the vicinity of directly irradiated cells may respond 

to the radiation exposure through redox-modulated intercellular communication pathways 

that propagate the oxidative stress initially originated in the irradiated cells (11-14). 

Together, these studies denote that cell populations exposed to ionizing radiation respond as 

an integrated unit rather than separate individual cells that have been irradiated.  

Upregulation of stress-responsive genes and proteins, genetic and epigenetic changes, 

induction of cell cycle checkpoints and cell killing arise in both irradiated and neighboring 

bystander cells, and the effects occur in various cell types of human and rodent origin at 

different stages of growth (reviewed in (15-17)). In addition to direct and indirect modes of 

intercellular communication, oxidative metabolism and DNA repair processes also mediate 

these effects (18, 19); however, the exact molecular steps involved have not been defined 

(20). Remarkably, perturbations in oxidative metabolism (e.g., disruption of the balance 

between oxidant production and antioxidant defense) occur not only in irradiated and 

bystander cells but also in their progeny (Figure 1). Clearly, the induction of oxidative 

injury in progeny of irradiated (21-23) and bystander cells (24, 25) has important 

relevance to risk of health hazards, including neurodegeneration, cardiovascular diseases 

and cancer (26).  
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Figure 1. HZE-particle irradiation induces targeted and non-targeted effects. Intercellular 

communications via direct or indirect modes lead to propagation of stress-inducing 

molecules from cells traversed by an HZE particle (cells in red) or the resulting 

secondary radiations such as delta electrons (cells in orange or yellow) causing induction 

of oxidative stress in bystander cells (blue). The progeny of cells traversed by radiation  

and the progeny of bystander cells may also experience oxidative stress. Cells in white 

are non-affected cells. 

 

 

Although classic in vitro radiation-induced bystander effects have been 

extensively investigated over the past 20 years, such interactions between irradiated and 

non-irradiated cells had been suggested from observations made decades earlier. 

Numerous experiments had shown that blood plasma from individuals undergoing 

radiotherapy or from individuals who were accidentally irradiated had a clastogenic 

effect on normal non-exposed cells (27, 28). Strikingly, levels of the inflammatory 

markers C-reactive protein (CRP), interleukin-6 (IL-6), and sialic acid were found to be 

increased in survivors of the A-bomb long after the event (29, 30). Moreover, increasing 

evidence indicates that inflammatory cells in circulating blood of patients that received 

partial body irradiation may also induce DNA damage at sites that are distant from the 

irradiated target (31), thus contributing to „out-of-field‟ or abscopal effects (32-35). 

Hence, the effects of localized energy deposition events in a cell cannot be assessed 

independently of neighboring cells.  In the context of exposure to low mean absorbed 

doses of radiation, non-targeted stressful effects are likely to develop in cells exposed to 

densely rather than sparsely ionizing radiations (24). For sparsely ionizing radiation (e.g. 

 rays delivered at low dose rate) protective (36-38) rather than harmful (39) responses 

may be induced.  

 

Experimental strategies 

Various in vivo and in vitro experimental strategies are being adopted to 

investigate non-targeted effects of low doses/low fluences of ionizing radiations, 

including HZE particles found in space. They involve partial body irradiation of rodents, 

monolayer cell cultures exposed to electromagnetic radiations or very low fluences of 

energetic ions, and co-cultures of irradiated cells with non-irradiated cells (Figure 2). 
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Figure 2. Experimental approaches used in studies of non-targeted effects of ionizing radiation. (a) In vitro studies where monolayer 

cell cultures are exposed to low fluences of particulate ionizing radiations (IR) or to particulate or electromagnetic radiations from a 

microbeam; direct and indirect modes of communication may mediate non-targeted effects in this approach; (b) in vitro studies where 

diffusible factors mediate non-targeted effects; (c) in vivo approach where immune/inflammatory responses mediate non-targeted 

(abscopal) effects. Note: The physical and biological parameters that characterize „non-targeted effects‟ are likely to depend on a 

number of factors, such as dose, dose rate, radiation quality, and cell phenotype.  
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Figure 3. The track structure and apparent bystander effects. Delta rays resulting from the interaction of primary HZE particles with 

the target materials travel a significant distance and may deposit a biologically significant dose in cells in the vicinity. 

  

Figure 3. The track structure and apparent bystander effects. Delta rays resulting from the interaction of primary HZE particles with the 

target materials travel a significant distance and may deposit a biologically significant dose in cells in the vicinity. 
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When examining non-targeted effects induced by HZE ions, for the in vivo 

strategy and in monolayer cell culture studies, the effects of secondary radiation have to 

be considered when interpreting non-targeted oxidative effects. Cells presumed to be 

bystander might be hit by secondary electrons generated as a result of the interaction of 

the primary HZE particles with biological matter (Figure 3). Whereas the scheme in 

Figure 3 is representative of  electrons, other secondary radiations including heavy 

fragments, α-particles, protons, photons and neutrons may be generated; however, the 

absorbed doses due to these particles is very small compared to that of the  electrons 

(the readers may wish to refer to expert reviews on this topic). Monte-Carlo simulations 

using programs such as FLUKA and MCNPX multi-particle transport codes are greatly 

enhancing our understanding of the contribution of secondary radiations in HZE particle-

induced bystander effects (40, 41). These studies allow estimation of the fraction of cells 

that are not traversed by fragmentation products and also the fraction of cells that are 

traversed by these products together with the doses received. Importantly, they permit 

quantification of the radial distribution of the secondary particles, as was recently shown 

(41). 

Compared to studies with irradiated monolayer cell cultures, the use of co-culture 

strategy eliminates complications in interpreting bystander responses attributed to 

secondary radiations. In the co-culture strategy, secondary radiations due to 

fragmentation of the primary HZE particle are absent as the co-cultured cells originate 

from separate growth vessels (42, 43). Further, this strategy readily permits investigation 

of phenotypic and genotypic traits (e.g. altered oxidative metabolism and genetic 

susceptibility to radiation-induced damage) of cells donating or receiving the bystander 

signal. On the other hand, effects of rapidly propagating factors from irradiated cells may 

be missed because adequate time is required after irradiation to establish the co-culture. 

Importantly, such experiments should be stringently controlled for variations in oxygen 

tension, pH, temperature and dilution effects during handling of cells, as these parameters 

affect cellular physiology, the propagated molecules and the modulated signaling 

pathways. 

 

The radiation response in cells not directly traversed by high charge and high energy particles: The bystander effect of space radiation. 
Domogauer J, Azzam EI.  https://three.jsc.nasa.gov/articles/Azzams-Bystander-Effect.pdf. Date posted:  03-10-2014.



 

11 
 

Space radiation-induced non-targeted effects 

Studies of bystander effects in cell cultures exposed to low fluences of HZE 

particles are only emerging, and conflicting data have been reported. In early experiments 

with a microbeam, stressful effects were shown to be propagated from HZE particle-

irradiated cells to contiguous bystander cells (44). In addition, when HZE particle-

irradiated cells were co-cultured with bystander cells in a manner in which they shared 

only the growth medium, stressful responses were also induced in the bystander cells and 

were similar in nature to those generated in the targeted cells (45-48). With relevance to 

cancer risk, oxidative stress and DNA damage persisted in distant progeny of bystander 

cells that had been in contiguous co-culture with HZE particle-irradiated cells (24, 25). 

However, transferring the growth medium from irradiated cultures to recipient bystander 

cells (49, 50), or the targeting of a small number of cells in a population with HZE 

particles delivered by a microbeam (51), did not induce bystander effects measured by a 

variety of endpoints in several cell types. Numerous factors may underlie the absence of 

observable effects in these cases, including timing of endpoint measurement, dilution of 

the inducing factor and the metabolic state/redox environment of the recipient cells.  

A clear demonstration of HZE particle-induced bystander effects was recently 

generated by Gonon et. al. (41). In a study involving normal human cells maintained in 

culture, the authors investigated the upregulation of stress markers in confluent cells 

exposed to 1000 MeV/u iron ions (linear energy transfer (LET) ~151 keV/μm) or 

600 MeV/u silicon ions (LET ~50 keV/μm) at mean absorbed doses as low as 0.2 cGy, 

wherein on a statistical basis,1-3% of the cells were traversed through the nucleus by a 

primary particle. Adopting in situ studies, the authors have observed significantly greater 

increases in 53BP1 foci formation, a marker of DNA damage, than expected from the 

number of primary particle traversals. Their observations highlighted the importance of 

radiation quality in the induced effect. By simulations with the FLUKA multi-particle 

transport code, they showed that fragmentation products, other than electrons, in cell 

cultures exposed to HZE particles comprise <1 % of the absorbed dose. Further, the 

radial spread of dose due to secondary heavy ion fragments is confined to approximately 

10-20 µm. Hence, they concluded that the latter are unlikely to significantly contribute to 

stressful effects in cells not targeted by primary HZE particles. 
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Interestingly, a dose response model that takes into account bystander effects 

provided an improved fit, compared to the targeted effect model in analyses of Harderian 

gland tumors induced in mice exposed to heavy ions (52). These data probably represent 

the most comprehensive study for tumor induction by heavy ions. In other studies, Weil 

et al. (53) have suggested circulating inflammatory cytokines and non-irradiated 

parenchymal cell responses to oxidative stress as contributing factors to the unexpected 

high relative biological effectiveness of energetic iron ions in inducing hepatocellular 

carcinoma. 

 

Mechanisms of radiation-induced bystander effects 

Investigations of the mechanisms mediating the radiation-induced bystander 

effects have mainly focused on the role of transmissible factor(s) generated by irradiated 

cells, direct intercellular communication via gap-junctions, oxidative metabolism and 

DNA repair. In the first instance, it has been suggested that secreted transforming growth 

factor beta 1 (TGF-1) (54, 55), Il-8 (56) or prostaglandins (57) in the medium of -

particle irradiated cell cultures may have a role in mediating bystander responses.  

Network analysis of gene expression data has identified a number of genes coding for 

potential extracellular signaling molecules that were up-regulated in both irradiated and 

bystander fibroblasts. These included genes previously implicated in bystander response, 

such as IL8, IL1A and IL1B, as well as new candidates, such as IL6, IL33, LIF (leukemia 

inhibitory factor gene) and FGF2 (fibroblast growth factor 2) (58). 

Evidence for the involvement of gap junction intercellular communication (GJIC) 

in propagation of bystander effects has been derived from studies with high and low LET 

radiations (44, 59-66). Gap-junctions were shown to mediate the propagation of stressful 

effects not only between targeted and non-targeted cells, but also among the targeted cells 

(67). The intercellular channels that comprise gap-junctions are formed by connexin 

proteins (68). Manipulation (↓↑) of connexin expression/gap-junction gating by 

chemical agents, forced connexin expression by transfection, and connexin gene 

knockout studies provide substantial evidence for the participation of gap-junctions in 

radiation-induced bystander effects (12). 

The radiation response in cells not directly traversed by high charge and high energy particles: The bystander effect of space radiation. 
Domogauer J, Azzam EI.  https://three.jsc.nasa.gov/articles/Azzams-Bystander-Effect.pdf. Date posted:  03-10-2014.



 

13 
 

An indication that reactive oxygen species (ROS) are involved in the induction of 

bystander effects was suggested when the induction of sister chromatid exchanges 

(SCEs) in bystander cells was inhibited by the antioxidant superoxide dismutase (SOD), a 

superoxide radical scavenger (54). Subsequent studies using more direct approaches have 

shown that low doses of α-particles initiate the intracellular production of ROS 

(superoxide anions and hydrogen peroxide) in human cells through involvement of the 

plasma membrane bound NADPH-oxidase (69). These studies suggested that the ROS 

response did not require direct nuclear or even cellular hits by α-particles (69). Oxidative 

metabolism has also been implicated in toxic bystander effects observed in media transfer 

experiments involving -radiation (11, 70, 71). Treatment of the irradiated cultures with 

the antioxidants L-lactate and L-deprenyl (11, 70, 71) or with drugs that inhibit collapse 

of mitochondrial membrane potential prevented the cytotoxic effects from irradiated cell 

conditioned medium (71). Further, critical molecules that participate in inflammatory 

responses/redox-modulated events, such as cyclooxygensae-2 (COX-2), were shown to 

participate in bystander effects (57).  

The involvement of DNA repair in bystander effects was implied by studies with 

Chinese hamster ovary cells bearing an xrs-5 (X-ray sensitive-5) mutation, which reduces 

the ability to repair DNA double strand breaks. The latter cells were sensitized relative to 

wild type cells to the formation of chromosome aberrations caused by bystander effects 

induced by a low fluence of α-particles (72). Further, Rad9, which is involved in DNA 

repair and cell cycle checkpoints, was shown to participate in the bystander response to 

radiation exposure. Mouse embryonic stem (ES) cells null for the RAD9 gene 

demonstrated enhanced bystander micronuclei formation and apoptosis relative to wild-

type Rad9 controls (73).  

 

Conclusions 

In vitro and in vivo observations have provided strong evidence indicating that 

molecular events leading to various biological effects, including genetic damage, can be 

transmitted from irradiated to non-irradiated cells. Preliminary evidence points to a 

crucial role of plasma membrane originating effects where gap-junctions and critical 
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enzymes such as COX-2 and numerous kinases are located. Further, the expression of 

connexin proteins has been reported to be modulated by the cellular redox environment 

and by redox-sensitive soluble factors released by cells exposed to ionizing radiation (e.g. 

tumor necrosis factor alpha(TNF-α), Il-1) (74, 75). However, it is also possible that 

specific bystander effects are regulated by some mechanism(s) and not by others; this 

may depend on cell type, cellular growth state, type of radiation and the biological 

endpoint being measured. It is attractive to speculate that extensive cross-talks between 

the various mediating mechanisms will occur.  

The lack of clear knowledge about non-targeted responses has been singled out by 

the U. S. National Academies (3) as one of the important factors limiting the prediction 

of radiation health risks associated with space exploration. This is because during deep 

space travel, only a small fraction of cells in the human body experiences extremely 

dense ionizations created along the tracks of the traversing particles in a given day (76). 

Moreover, the radiation traversals that create these densely ionizing tracks are likely to be 

separated in tissue location and time (39).  

Due to our limited knowledge of biological changes in cells traversed by primary 

HZE particles and in those in the vicinity, scientific councils (77, 78) have postponed 

defining the exposure limits for a Mars mission until more data on the effects of exposure 

to heavy ions are obtained. Further studies of non-targeted effects involving variations in 

dose rate and exposure to mixed beams of low and high linear energy transfer (LET) 

radiations (e.g., low fluence protons and HZE particles) are essential towards setting 

these limits. However, such investigations are currently limited. The availability of 

ground-based facilities such as the NASA Space Radiation Laboratory (NSRL) at the 

Brookhaven Laboratory capable of generating broad beams of HZE particles and protons 

will greatly support these efforts. The cross-talk between signaling events induced by the 

dense and sparse ionizations are likely to have significant effects on the biological 

response. In cell populations, and potentially tissue systems, exposed to low fluences of 

HZE ions, protective mechanisms (e.g., enhanced DNA repair, increased antioxidant 

potential) induced by low LET secondary radiations may mitigate stressful effects 

propagated from adjacent cells traversed by primary particles (79). Conversely, the non-

irradiated cells in the exposed population may transmit rescuing signals to the irradiated 
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cells (80). In this context, experiments evaluating various biological endpoints following 

exposure of cell cultures to a specific dose of HZE particles delivered either acutely or at 

very low dose rate would be highly informative of the cross talk that is occurring. This is 

critical as astronauts are usually exposed to heterogeneous ionizing radiation fields. A 

prior exposure to a low dose of low-LET radiation may induce protective processes, 

thereby attenuating the damaging effects of a subsequent exposure to high-LET ionizing 

radiation and ensuing harmful bystander effects, at least in the short-term. Additional 

studies addressing this aspect as was done in tissue cultures experiments involving space 

radiation (43) or alpha particles such as those emitted by radon and its progeny (81, 82) 

would enhance our understanding of the biological effects of the mixed fields of radiation 

that astronauts are likely to encounter.    

In summary, bystander effect studies have led to a paradigm shift in our 

understanding of classic target theory. They are enhancing our general understanding of 

intercellular communication under stress conditions. The outcome may contribute to both 

radiation protection and radiotherapy. 
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